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Mixing Properties of Quantum Systems 
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We generalize the classical notion of topological mixing for automorphisms of 
C*-algebras in two ways. We show that for Galilean-invariant Fermi systems 
the weaker form of mixing is satisfied. With some additional requirement on the 
range of the interaction we can also demonstrate the stronger mixing property. 

KEY WORDS: 

1. I N T R O D U C T I O N  

Boltzmann's vision of the ergodic behavior of large systems is realized for 
asymptotically Abelian quantum systems. For  these systems additional 
constants which might spoil ergodicity are in the center ~e of the algebra 
of observables and if the system is completely quantal in the sense that 
is trivial, nothing obstructs ergodicity. In this paper we shall characterize 
a class of systems for which these conditions are met and show that they 
even have some strong mixing properties. For  recent work on this problem 
see refs. 1-4. 

Finite quantum systems are never mixing and since infinite systems 
might have finite parts which are shielded from the rest of the world, also 
infinite systems will, in general, not mix. However, if a system does not 
have any fixed part, such as particles interacting with potentials depending 
only on the distance between them, then one feels that any disturbance will 
eventually diffuse to infinity and there should be some mixing. We shall 
substantiate this feeling and show that under these circumstances the 
system mixes in the following way: For  any two projectors ( = p r o p o s i -  
tions) P and Q and any e > 0 there is a time T such that P and Q, for all 
t > T have almost a common eigenvector 0. Almost is measured by e in the 
sense I(PO[Qt~O)I > 1 - e  if P, Q r  A typical case is the proposition 
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"there is a fermion in state f ,"  where the corresponding projector is n F = 
eTej.. The negation of it, "there is no fermion in state f ,"  has the projector 
1 - n  F and nF((1-  nf)= 0. Under the free time evolution n 7 changes to nF, 
where ( f [ f ~ ) ~ 0 .  Thus, ns (1-n j ;  ) will become ~0,  in fact, for 
( f  I f t) = 0 a vector with a particle in state f is a common eigenvector with 
eigenvalue 1 for nf and 1 -  nf. Our result extends this to all propositions 
of the observable algebra to a reasonable class of time evolutions. This 
means that the system is totally chaotic and all information gets lost since 
all propositions eventually become compatible. It seems that this is 
showing too much, since after all some information remains even in large 
quantum systems. For instance, if we have a mixture of two kinds of 
substances which do not react chemically, whatever happens we know what 
their densities are. The latter statement is correct and the formalism tells us 
that these densities are elements of ~e and therefore pure numbers. They do 
not change with time and the product of any proposition associated with 
them is 0 or 1. Our results depends on the algebra of observables which are 
localized quantities. It does not apply to global quantities constructed with 
strong limiting procedures, For instance, in the vacuum representation e im 
can be constructed as strong limit of local observables, and since this 
operator is constant in time, its projections obviously do not satisfy our 
condition. 

Finite quantum systems are never completely mixed through, since 
there is at least one nontrivial constant, namely the Hamiltonian, and 
different energy shells do not communicate. However, infinite systems 
should be considered as open, since only finite parts are observable and 
they always interact with the outside. Hence, the Hamiltonian is not part 
of the observables and it is possible that the multiples of unity are the only 
constant observables. Our result shows that under these circumstances the 
quantum systems have strong mixing properties, whereas classically they 
are, in general, only ergodic. 

Considering spatially infinitely extended systems, one faces the 
problem of whether a formal Hamiltonian defines a time evolution. For the 
free time evolution or for some lattice systems with finite-range interaction 
we know this to be the case. For the continuous systems we are interested 
in the problem is nontrivial, since the usual perturbation theory with 
respect to the potential cannot converge. This is suggested by Dyson's old 
argument that a convergent perturbation expansion would define the time 
evolution also for the potential with opposite sign. However, there is no 
potential known for which the system is stable for both signs of the poten- 
tial and for one of the two signs a catastrophic behavior is to be expected. 
Some results on this question have been obtained by various authors. (5'6) 
We shall not pursue it further, but hope for the best. 
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2. T H E  M I X I N G  T H E O R E M  

The observables of a quantum system usually form a C*-algebra ~'. 
We shall be concerned with an infinite Fermi system where the field algebra 
Y consists of polynomials in the creation operators 

0:~ --= f d3xf(x)o~*(x)= f d3k ~7(k) 5*(k) 

the destruction operator c~g, and norm limits thereof. The wave functions 
f a n d  g are from LZ(R3), since Ilegll 2 = IIgI] 2 = ~ d3x Ig(x)l 2. Here s~ is the 
subalgebra of ~ where each term in the sum has an equal number of cds 
and ~*'s. A state r over ~ is a positive linear functional over ~ ,  that is, 
a linear map ~---* C such that ~ + ~  R+,  ~ + denoting the positive 
elements from o ~ .  The GNS construction associates to r via the regular 
representation of ~ a representation H~ in a Hilbert space ~ .  For  
instance, the thermal state with the two-point function 

d3k ~(k) ~,*(k) 
] (2n) 3 1 + exp[ fl(k 2 - p)]  

(2.1) 

and vanishing reduced (n/> 3)-point functions give a Fock representation 
in terms of two Fermi fields ~1.2 [ 

~l(k) 
Hr = { 1 + exp[ - f l ( k  2 - /~ ) ]  } 1/~ + ( - )ul 

a~(k) 
{ 1 + exp[ fl(k 2 -/2)]} 1/2 

(2.2) 

The Fock vacuum 10), ~l(k) 10) = ~2(k) 1 0 ) =  0 reproduces r 
(01 Ho~(a)10)=r u  These representations are reducible, the 
commutant ~ '  = {a e ~(Jf~): [a, b] = 0, Vb ~ H ~ ( ~ ) }  is nontrivial, in fact, 
conjugate-isomorphic to ~ .  The following features will be important: 

1. r is faithful: r = 0 ~ a = 0, Va e Y +, fl # oo. 

2. Hcp are factor representations, ~ - J~' c~ ~ "  = c 1. 

3. The infinite-temperature state ~b o is tracial, r O(ba). 
4. The Fock state corresponds to f l=  oo, ~boo(e*c~)=0. The corre- 

sponding representation is irreducible. 

Remark  2.1. For Abelian algebras all states are tracial, whereas for 
the (n x n) matrices Mn only (l /n) tr is a tracial state. ~ belongs to a class 
of algebras, the so-called U H F  or Glimm algebras, for which there is 
exactly one faithful tracial state r as a consequence r is invariant under 
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any automorphism z of ~ ,  since ~b 0 o ~ is also tracial and therefore ~b0. 
Furthermore, H~0 is a factor representation, since Vz e Y" +, ~b~(a)= q~o(za) 
would also be tracial and ~bo(za ) = ~bo(a) Va implies z = 1. 

The local structure of d suggests that macroscopically separated parts 
should be independent in the sense that the corresponding observables 
commute. These ideas are made precise by the following definition. 

Def in i t ion  2.2. Let Tt be a one-parameter group of d - - + d ,  
a-~ at, ~b an invariant state (~boz~ = ~b) and //~ the associated representa- 
tion in ~ .  We call ( d ,  z, ~b) strongly (resp. weakly) asymptotically 
Abelian if E//o(a),//o(bt)] converges strongly (resp. weakly) to zero Va, 
b E ~ ,  t - * _ + ~ .  

R e m a r k  2.3. Without reference to H~ the conditions can be 
equivalently stated as 

O(c[a*,b*]Ea, b t ] d )  ' ~ > 0  resp. O(c[a, b t ] d )  ~ , 0  Va, b , c , d ~ d  

Independent systems are tensor products and an invariant state which 
has product structure for widely separated parts leads to an asymptotic 
Abelian situation. 

Def in i t ion  2.4. An invariant state ~b is called hyperclustering (resp. 
clustering) if for t -~ 

(b(abtc d,e) --* (~(ace) O(bd) resp. (b(abtc) ~ O(ac) O(b) Va, be, d, e ~ d 

Proposi t ion  2.5. If ~b is hyperclustering (resp. clustering), then 
( d ,  ~, ~b) is strongly (resp. weakly) asymptotically Abelian. 

Proof. Using Remark 2.3, we see for the strong properties 

~b(cEa*, b* ][a, bt] d) = O(ca*b*ab,d) + O(cb*a*btad) 

-- (J(ca*b*btad) - (~(cb*a*ab,d) 

2(~(ca*ad) ~b(b*b,) 

- 2(J(ca*ad) qD(b*bt) = 0 

and even more trivially for the weak properties. 

Remarks  2.6. 

1. By Riemann Lebesgue the thermal correlation functions (2.1) 
decay both for the shift ~(k) --+ eikX~(k) and the free time evolution ~(k) --. 
e-i~2t~(k) such that ~ ,  0 ~< fl ~< 0% is strongly clustering and sr is strongly 



Mixing Properties of Quantum Systems 815 

asymptotically Abelian for these automorphisms. For ~bo and ~b~ the same 
is true for the boost ~(k) ~ ~(k + p). 

2. Since hyperclustering implies that the commutator applied to any 
fixed vector a I~0) e ~ goes to zero, we see that all higher n-point func- 
tions factor automatically: 

O ( a ( 1 ) b ~ l ) a ( 2 ) b l 2 )  . . .  a (n)) 

= <~0l a(1)[bl 1), a (2)] - . -a (n) I(p> 

+ (r a(1)a(2)b~ l) . . . a  (") I~o) . . . .  

= (J(a(X)a (z). . .  a(")bl 1)-.. b~" 1)) 

+ terms going to zero for t -~ _+ 

3. Clustering and strong asymptotic Abeliannes together imply 
hyperclustering. 

In a mixing classical system each part of phase space gets in the course 
of time finely dispersed over the whole phase space. Correspondingly, each 
subvolume U eventually overlaps with each fixed volume V such that the 
product of the characteristic functions X~, ':~ v is 1 at some places Vt > T. 
This observation lends itself to a definition of mixing for an arbitrary 
C*-dynamical system. Again we need a distinction without classical 
analogue. 

Def in i t i on  2.7. A dynamical system (~4, ~) is called strongly (resp. 
weakly) mixing if, Va, b ~ ~r 

lim Ilabtl[ = Hall [Ibl[ 

(resp. 3T such that ab t 5 0 ,  V t >  T). 

Remark 2.8. For a classical system where d =  C(M), the con- 
tinuous functions over the phase space M, and z is generated by 
homeomorphisms z , :  M - + M ,  ~ ( f ( x ) ) = f ( z , x )  weak and strong mixing 
are equivalent to what is called topologically mixing. It is defined as 
follows: VU, V c M  and open 3T such that z,t(U)c~ V~0,  Vt> T. It 
implies in particular the existence of a dense orbit and that time-invariant 
functions E C ( M )  are constant on M. In Definition 2.7 we do not use 
the adjective "topological." It seems redundant, since there is no other 
structure mixing can refer to. 

T h e o r e m  2.9. A dynamical system ( d , ~ )  is strongly (resp. 
weakly) mixing if it has a hyperclustering (resp. clustering) invariant state 
q$ wi th / /~  (resp. ~b) faithful. 
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ProoL 

(i) The weak properties: fD(ab~b*a*)~ (b(aa*)(~(bb*)>0. Thus, 3T 
such that (~(abtb*a*)> 0 and therefore abt v~O, Vt > T. 

(ii) The strong properties: Since cdtabtb*a*d,*c* <<. Itabtl[ 2 cdtdt*c*, 
we have, Va, b, c, dE d ,  

(j( cdt ab t b * a* dt* c* ) 
<~ Ilab, ll 2 

(~(cdtd,* c* ) 

By the cluster property the left-hand side tends for t ---> ~ to 

~b( caa* c* ) (~( dbb * d * ) 

q)(cc*) (J(dd*) 

and faithfulness of Ho implies 

sup 
c E ~  

Thus, 

(J(caa*c*) 
Ilall 2 (J( cc* ) 

lim Ilab, ll2>i Nail = Ilbll 2 
f ~ o o  

but generally [lab, II ~ Ilall Ilbll, which proves Theorem 2.9. 

R e m a r k  2.10. In ref. 2, strong mixing is proved without reference 
to a state provided that ~r is simple (which is the case for UHF-algebras) 
and Definition 2.2 is strengthened to II I-a, b,] II ~ 0. This norm convergence 
is satisfied for the even elements of the Fermi field algebra under transla- 
tions or free time evolution, but hard to prove for realistic interactions. 

3. CLUSTER PROPERTIES OF ~o and ~ FOR T I M E  
E V O L U T I O N S  W I T H  G A L I L E A N - I N V A R I A N T  I N T E R A C T I O N S  

In the last section we noted that ~b 0 and ~b~ are hyperclustering for the 
shifts in configuration and momentum space and free time evolution. We 
shall now examine what remains true for interactions which are invariant 
under the first two automorphisms. First we have to inspect the structure 
of the group generated by these various transformations. 

Def in i t i on  3.1. The automorphism groups shift a o, boost ~p, and 
gauge transformation vx are defined by actions on ~y as follows: 

ap(O~f(x))=O~f(x+p), Yp(O~(k))=O~jT(k+p), YZ(~f)=O~ei2f. 
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They satisfy 

(~p~176 ~ p ~ 1 7 6  ~p~176 ~ pp 

A time evolution T, is called gauge and Galilean invariant if 

Tt o 1~2 ~ 1~2 o"gt ,  TtO(Tp~O'pO~t, TtO~)p~p~176 tp~ 

R e m a r k s  3.2.  

1. The properties of vt are abstracted from finite systems with a 
Hamiltonian which consists of a kinetic energy p2/2 and a potential 
invariant under ~r, 7, and v. For an infinite system such a Hamiltonian with 
a local potential could be formally written as 

1 
f d3x V~*(x) V~(x) 

f dx dx' ~*(x) o~*(x') v(x - x ' )  ~(x') ~(x) + 

but it remains to be studied how to interpret such an expression. 

2. In the representations //*0 and H,~ these automorphisms are 
unitarily implemented, since ~b o and ~boo are invariant under their action. In 
//*e, 0 < / / <  o% the Galilei group is broken and G does not exist. Denoting 
the unitaries corresponding to v;~, ap, *t, and 7p by d "~N, e ipp, e ii-it, and 
e ~pG, respectively, we deduce the commutation relations 

[P,G]=iN, [H,G]=iP,  [G,N]=EP, N ] = [ H , N ] = O  (3.1) 

The representation theory of such an algebra is well known, since we know 
that N is in the center and has integer eigenvalues n e Z .  We have to 
distinguish between n = 0, where P and G commute, and n # 0, where they 
satisfy Heisenberg's commutation relations. Thus, in Hilbert space we have 
the following sectors (compare, e.g., ref. 7): 

(a) The n # 0  sector. The operators can be written 

n O  1 
P = p |  G = 7 ~ p p |  H=--P:|174 (3.2) 

where Hin t m e a n s  some internal Hamiltonian about which we cannot say 
anything. However, in the first factor the Hilbert space is L2(R, dp) such 
that the spectrum of p2 is absolutely continuous. 
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(b) The n = 0  sector. This sector contains the cyclic vector 1s 
corresponding to ~bo, resp. ~b~. They are eigenvectors for all four 
generators, all of them having eigenvalue zero. The representations of P, G, 
and N are explicitly known and show that there is no other invariant 
vector. In the rest their action is of the form 

P = p |  G = p |  H = l |  (3.3) 

Here we know nothing about p, but the second factor in the Hilbert space 
is L2(R, h) and thus H has an absolutely continuous spectrum. 

Proposition 3.3. For t ~  ___~, e iu' converges weakly to 1s 

Proof. From the representations (3.2) and (3.3) we see that apart 
from 112), H has an absolutely continuous spectrum. Thus, Proposition 3.3 
follows from Riemann-Lebesgue. 

Corollary 3.4. (o~,r,~bo) is clustering and therefore weakly 
asymptotically Abelian and weakly mixing. 

Proof. (~o(ab,c) = Oo(cab,)= (s cae -imb 112) ~ r q)o(b). 

Remark 3.5. In this case the same conclusion holds even for 
/7~0(ff)", the strong closure of //~0(~). The above argument does not 
work for ~b~, since it does not have the cyclic properties of ~bp, fi < 09. 
Thus, the cluster!ng property of (~(ab,) does not extend generally to 
(~(ab,c). Actually, ( / / ~ ( ~ ) " ,  a, ~bo~) is not asymptotically Abelian, since 
/ /o+(ff)" contains noncommuting translation invariant elements. 

Finally, we shall inspect the mixing properties in f/0+" One has the 
feeling that in this representation vt(~f) should converge weakly to zero for 
t ~ _  ~ ,  since it creates a particle far away and these vectors become 
orthogonal to the others in orgy+ which live mainly in finite regions. 
Similarly, z,(~r should converge strongly to zero, since it wants to destroy 
particles where there are none. Finally, [t,(~f), ~*] + may be expected to 
converge in norm to zero since v~(~s) tries to destroy the particle in the 
fixed state g and this ought to go to zero for t-* _+ ~ irrespective to the 
vector to which one applies this procedure. 

To see what can be substantiated by proofs, we start the following 
results. 

Proposition 3.6. T,(H~+(~f)) converges strongly to zero for 
t -+  ~o0.  



Mixing Properties of Quantum Systems 819 

ProoL In Ho~ the n = 0  sector consists only of the vacuum t0) and 
since e s [ 0 ) =  0, we can turn to the n > 0  sectors (3.2). Here 

~ = ~ |  ~ = v |  

U, = exp[  - iP2t/2n] | exp[  - iH~t],, Utr = v t | w t 

vt = exp [ - iP2/t/2n ] v --~ 0 

This implies that for any projection q E ~(~r with trg0 q < oo and e > 0, 
3T such that [[qvtll<e, V t>T .  Furthermore,  V A e ~ ( ~ o ~  ) with 
[[tr.% A'All  < oo, where t r ~  is now the partial trace, there exists a projec- 
tion q ~ ~ ( ~ )  with tr.r q < Go and 

] [ (1 -Q)A*A(1-Q)[]<ez<=~I fA(1 -Q)[ I<e  where Q = q |  

For  such an A we have AU,~--~ 0, since 

[IAU, v | w[[ = ][A(1 - Q + Q)v, @ w, [[ 

~< ][A(1-Q)[[ + i[A[] [[qvtl[ ][wt[t <2e,  V t > T  

and the vectors of the form v | w are total in o~g~o 0. 
To apply these results to ~i, we note that ~ y  acts in the n-particle 

sector in a momentum representation as the integral kernel 

K ( P l  " ' '  Pn; P'I "' '  P'n) = ~ 6 ( P l  -- P ' I ) " "  f ( P j )  
j ~ l  

x f * ( p j )  . . . •(p,  - -p ' )  

The partial trace over the total momentum is an operator in the space with 
Z j  Pj = 0 and is given by 

trgo e~ef ~ I dqK(p~ + q,..., Pn + q; Pi + q,..., P'n + q) 

n--1 

=n Iq 6(pj - p j )  f dq If(q)[ 2 
j = l  

~ l . n  f dq if(q)[2 

This is not a bounded operator  in ~ffw, but it is dominated by N =  
~dp(t*(p)~(p).  Thus, ~;/(1 + N )  satisfies the criteria for A and since 
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( I + N )  ~ is a bijection S4~w+--,~ we can argue that also the q~= 
[-1/(1 + N ) ] v |  are total in ~ .  Thus, 

c~U~ 1 w II~,@ll = ~ v |  

1 |  = ]--~--~ v, --,0 

proves Proposition 3.6. 

Corollary 3.7. z,(a) converges weakly to O ~ ( a ) V a e H r  it 
does so strongly for a e Hr174 

Remark 3.8. By H 4 , ( J )  we mean the representation of ~r in ~ ,  
the Hilbert space for Hr and not the one-dimensional representation 
a ~ ~b~(a) which one gets from the GNS construction for s t  with ~bo~. 

Proof. Since A --* A* is weakly (but not strongly) continuous, z,(aT) 
converges weakly to zero [not strongly as r , ( ~ j ~ 7 ) ~ b ~ ( c ~ r  
ItflJ2-~ 0]. Using the CAR, any a e Hr  can be ordered, 

a =~b~(a)+ Z c~ c~ ~ . . . c ~ g ,  ...c~g,, (3.4) 

Now, for t--, _+ oe each term with m r 0 in Z converges strongly to zero, 
the others only weakly. 

Corollary 3.9. 
and clustering. 

P r o o f .  ab t - b ,a  

b e Hr Thus, 

(~o~(abtc) --* Oo~(acb,) --* {0[ ac [0){0j b [0) 

(Hr ~, ~b~) is weakly asymptotically-Abelian 

converges weakly to aO(b) -O(b )a=O Va, 

Corollary 3.10. (Hr z, r is strongly asymptotically 
Abelian and hyperclustering. 

Proof. For a, b e d ,  a b , - b , a  converges strongly to aO(b) -O(b)a  
= 0. The hyperclustering follows from Remark 2.6.3. 

Remarks 3.11. 

1. The strong conclusion does not hold for (Hr z, ~boo) and 
therefore we cannot conclude mixing properties for any of the two algebras. 
sr is not simple; in fact, the a's of the form in Corollary 3.7 with r  = 0 
are a two-sided ideal I of sO. The GNS construction with r  of s~r 
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represents faithfully only ~r  by the one-dimensional representation 
a ~ ~boo(a). On the positive cone generated by the elements of the form 
~fl ""  e f , ~  "'" e~ we have 

q~o~(a) = Hfl II 2 IIf2 II 2 "'" Itf, II 2= Half 

and thus for them the canonical map ~r ~ ~ \ L  a ~ ~b~(a) is an isometry. 
Then the conclusion of Theorem 2.4 holds and we have strong mixing, but 
only on this positive cone. On the other hand, 06oo is not faithful on Y;  
thus, Theorem 2.9 does not apply. 

2. Our proof applies to start with two polynomials in the field 
operators. It is readily seen to extend to the norm closure of this algebra, 
that is, the C*-algebras H ~ ( d )  and H ~ ( ~ ) ;  respectively. It does not, 
however, extend to the yon Neumann algebras Ho~(d)"  and H ,~ ( ~ ) " ,  
since the limits t ~ _ oo will not commute with the strong closure. 

We can show the strong version of Abelianness, clustering, and mixing 
for d only if in addition to Galilei invariance we impose some short-range 
condition on the interaction. It is the following. 

De f in i t i on  3.12. Denote by H n the restriction of the Hamiltonian 
in H ~ ( f )  to the n-particle sector such that Hi = H e  is the free 
Hamiltonian. Write H ,  = H , _ I  + H1 + V1 and V~(t)= exp[iH~t] V1 
exp[-iH~t]. We say that (z,~-,~b~) has asymptotically trivial Mr 
operators if 

s- lira exp{-it[Hn_l +Hi + Vl(t)]} exp[it(H. 1 + H I ) ]  = 1  
t ~  + o 0  

R e m a r k  3.13. For local pair potentials, 

n 

Vl(t)= }-" V(x l ( t ) -x  fl 
j = 2  

and asymptotic triviality means that the Moiler transformation approaches 
unity at infinity in configuration space. We shall not determine the exact 
class of potential for which this is true, but give in the Appendix some 
indications where it holds. 

T h e o r e m  3.14. A Galilean-invariant system with asymptotically 
trivial Moiler operator ( H ~ ( d ) ,  r, ~bo~) is strongly asymptotically Abelian, 
hyperclustering, and strongly mixing. For H~(o~)  the same conclusion 
holds provided the first two properties are understood with the appropriate 
signs to accommodate anticommutativity. 
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ProoL We start with asymptotic Abelianness and first note that it is 
sufficient to show that s-lim,_._+o~ [~*, z~(~j*)] + =0.  Second, we remark 
that this is equivalent to [~g*x'" * �9 ~g., zt(~7)] +_ 1 0 ) ~ 0  since a vector in the 
n-particle sector can be written A* 10) with 

A f t  = f d x  1 . . .  d xn~In (X  1 . . .  Xn) O~*(Xl)""" O~*(Xn) 

and 

Now 

~g ~? ) A ~  + ( - )~ ~ .  ~ .  ~e 

�9 �9 �9 ) " - I A . ~ ? )  + O ~ g ( U A  n + ( -  * �9 

--1 * * A , _ I U t l ~ 7  10) (U, ~yUtA,_~ + ( - )  n * 

has the wave function 

e -iHnt ~ f j ( x l ) ( - !  Wn-l~,Xl~ ---, ~J em~ t 2j, x.) 
j= l  

- -  ~ ( - ) i f  , ( X j ) ~ I n _ I ( X  1 ..... fCj ..... Xn) 
j = l  

(:~j means that this argument is deleted.) Such a vector converges strongly 
to zero iff 

eiHlte iHnteiHn it ~ i 

Since H1 and H, 1 commute, they act on different variables; this is equiva- 
lent to 

ciHlte--iHnt e- iHltei(Hn I + Hl)t ~ 1 

which is exactly the asymptotic trviality. This proves strong asymptotic 
Abeliannes, which, together with U t ~ 10)(0[, implies hyperclustering 

(01 abtcd, e 10) ~ (01 acebtdt 10) 

= (01 aceUtbd 10) ~ (01 ace 10)(01 bd 10) 

Appealing to Theorem 2.4, we get the strong mixing. 
Summarizing our findings, we state the following result. 

T h e o r e m  3.15. Let z, be a gauge- and Galilei-invariant time evolu- 
tion of the fermion algebra d .  Then ( d ,  z) is weakly mixing. If in addition 
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( d ,  z, ~b~) has asymptotically trivial Mr operators, then it is even 
strongly mixing. 

Remark  3.16. Although the free time evolution has both proper- 
ties, there is no mixing of the algebra ~4 [, reduced to a sector with a fixed 
number n of particles. For  instance, for one particle d [ 1  are the compact 
operators in L2(R 3) and the product of projectors with disjoint support in 
momentum space remains always zero if one of them evolves under the free 
time evolution. 

A P P E N D I X  

Here we discuss when we can expect that the Mr operators are 
asymptotically trivial. We do not intend to present the explicit analysis, but 
show the connection of the problem with the usual considerations to prove 
the existence and completeness of the Mr operators (see refs. 8-10). 

The existence of the limit is less problematic; thus, we might as well 
consider the Cesaro limit. Therefore, we want to show 

1 =st-lira e x p { - i t [ H n _  1 + H  1 + Vl,n l ( t ) ] }  
t ~ o o  

x exp[ i t (Hn_  1 + H~)] 

=w-l im e x p { - i t [ H , _ ~  + H I  + V~,n_~(t)]} 
t ~ 3  

•  1 + H i ) ]  

f: =w-lim e e x p ( i t H ~ ) e x p [ - i t ( H ~  ~ + H~ + V:~ :)]  
g " ~ O  " - -  

x exp(i tHn 1 -- et) dt 

It suffices to show the weak convergence on a dense set. We have used the 
formulation with the time-dependent potential because it is more 
suggestive, since we know that Vl,n ~(t) converges strongly to zero. But 
for calculation we concentrate on the last form 

1 = w-lim f dE 1 dE 2 6 ( H  1 - El) 
e "-~, 0 

• 6(Hn-  1 -- E2) 
Hn - -  E 1  - -  E2 -- ie 

8 2 2 / 5 7 / 3 - 4 - 2 6  
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= 1 - l i m  f dE1 dE26(H1 - E , )  
~ ".~ 0 

X H  1 + H . _ ,  - E l  - - E 2 - - i e  
VI,. 1 

1 
x 6(Hn- ,  - E 2 )  

Hn - E1 - E2 - ie 

1 
= 1 -- l i m e  f dE 1 dE2 6(H1 - E1 ) 

1 
xVl ,n i H I _ E I _ i  6 ( H n - I - E 2 )  

1 
- l i m e  f dE1 dE2 6(H1 -- Ea) 

~ o H~ _, - E2 - -  ie 

1 1 
x VI,~ , H _ E _ E 2 _ i  V~,~ 1 H _ E I _ i e d ( H . _ ~ - E 2 )  

It remains to argue that the integral gives a densely defined form. In this 
case the expectation value with a dense set is finite and thus lim~ ~ 0 ~( ""  ) 
gives zero. For  n = 2 we have for the first term the integral kernel in the 
spectral representation of  the momenta  

1 1 

P2 -- p•2 _ it P t - -  -- ie 

which corresponds to a bounded  operator  on weighted L 2 spaces for suf- 
ficiently regular potentials. (8~ The proofs of  the existence of  the Moiler 
operators should also give a control  on the type of the singularity of the 
kernel 

< E , ,  E'21 
1 1 

Hn_l--E2--ie V"n- I  H . - E , - E 2 - - i ~  

1 
• Vx,n- t H ,  - E l  - i e  IE',, E 2 )  
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